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This paper presents the results of a set of detailed experimental measurements 
on the resonant interaction of capillary-gravity waves for a case in which the 
entire propagation is in one direction. The influence of viscous attenuation is 
accounted for in the analysis. The measurements trace the entire spatial varia- 
tion, or modulation envelope, of the amplitudes of the interacting modes from 
their inception near a wave-maker to their ultimate extinction through viscous 
dissipation, in excellent agreement with the theory. This is an unambiguous 
demonstration that at  resonance and for the initial conditions specified at  the 
wave-maker, a wave of uniform profile cannot exist. 

1. Introduction 
In recent years there has been an intense interest in the non-linear theory of 

wave propagation in dispersive systems. Just several years ago a discussion 
meeting was organized by M. J. Lighthill? concerning the remarkable progress 
made in this difficult field in the six or so years prior to that meeting. It would 
be presumptuous to review all of that progress here. However, it will be illuminat- 
ing to present a brief background against which the investigations to be reported 
in this paper may be compared. 

Stokes (1847) was the first to consider the effects of non-linearity on periodic 
progressive gravity waves of permanent form on water of infinite depth. On the 
assumption that a finite amplitude wave of uniform profile (temporally and 
spatially) existed, he produced by a perturbation expansion an approximate 
expression for the form and speed of such a wave. In  the field of water waves, at 
least, this now familiar method of approximation traditionally bears his name. 
Stokes, Rayleigh (1917) and others have carried the approximation to the fifth 
order in an expansion parameter E ,  say, which is proportional to the maximum 
slope of the waves and is assumed small. Benjamin & Feir (1967), however, have 
established analytically and experimentally the remarkable result that Stokes 
waves, while representing theoretically possible states of dynamic equilibrium 
are infact unstable, the instability arising from what amount to third-order terms 
in the Stokes expansion. It is of course essential to their work that the assumption 
of a completely uniform state be discarded. 

t The proceedings of that meeting appear in Proc. Roy. SOC. Lond. A 299, 146B (1967). 
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The theory of the non-linear interaction of several intersecting trains of 
gravity waves was first presented by Phillips (1960). He showed by a Stokesian 
type perturbation analysis that for certain quartets of progressive gravity waves, 
a secularity among the third-order terms in the analysis will arise. He interpreted 
this as indicating that the amplitude of one ofthe members ofthis resonant quartet! 
will grow liriearly with time as it progresses, at  least until the conditions im- 
posed by the perturbation analysis are no longer applicable. This implies the 
absence of a uniform state for wave combinations satisfying the now wcll-known 
selective resonance conditions. 

Benney (1962) re-investigated the theory of resonant interactions by abandon- 
ing ab initio the assumption of a uniform state for resonant quartets. Under the 
assumption that the amplitudes of all the waves participating in the resonance 
are slowly varying functions of time, he obtained in principle solutions valid 
for longer time than were those of Phillips. 

The theory of these resonant interactions aroused something of a mild con- 
troversy, which was not resolved until Longuet-Higgins & Smith (1  966) and 
independently McGoldrick, Phillips, Huang & Hodgson ( 1966) presented 
detailed experimental measurements confirming the main predictions of the 
theory. It was Longuet-Higgins (1962), who first saw the need for these experi- 
mcrits and suggested a suitable experimental configuration. Both groups of 
investigators, however, were severely limited by the size of the experimental 
facilities. Because of the weakness of these gravity wave interactions, only 
the initial linear growth of one of the interacting components was observed. 
For coinpleteness and other reasons, which seemed compelling at  that time, the 
selectiviiy of the interactions was investigated with considerably more attention. 
Both sets of experiments have been summarized and compared by Phillips 
(1967), who shows in the same work the intimate relationship between these 
resonant interactions and the Benj amin-Feir instability mentioned above. 

For waves of sufficiently short length that the effects of capillarity become 
important, the attack on the influence of non-linearity has followed much the 
same road. Harrison (1909) computed a Stokes type approximation for a single 
train of capillary-gravity waves to the third order. He noticed that for wave- 
numbers less than a certain critical wave-number k* = (g/2y)* (g is the accelera- 
tion due to  gravity, y is the ratio of the surface tension coefficient to the density 
of the fluid), the influence of the non-linearities is to distort the wave profile in 
such a way that the crests are sharpened and the troughs flattened. This is con- 
sistent with the well known approximately trochoidal form found by Stokes 
for the longer gravity waves, and profiles of this type are called gravity-type 
profiles. For wave-numbers larger than k", the distortion is in the opposite sense. 
The so-called capillary-type profiles are flattened at  the crests and sharpened at  
the troughs. We now know that this is consistent with the exact profiles calculated 
by Crapper (1957) for pure capillary waves. Harrison noted in passing that the 
approximation breaks down when the wave-number is exactly k*. For this 
wave-number, the Stokesian analysis predicts a second harmonic distortion of 
the basic sinusoidal profile that has infinite amplitude, clearly violating the 
conditions of the perturbation procedure. 
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Wilton (1915), apparently unaware of Harrison’s work, carried the perturba- 
tion procedure to the fifth order, finding the same singularity present a t  all 
orders of approximation, occurring a t  wave-numbers k = (g/ny) i ,  n = 2, . . . , 5 .  
He then attempted to remove this singularity for the second-order analysis 
(n = 2) by including in the basic (unperturbed) state a second harmonic con- 
stituent of arbitrary (but constant) amplitude, which was to be determined in 
such a way as to effect the disappearance of the singularity. He retained, however, 
the assumption that a steady state existed. 

A little known paper, Kamesvara Rav (1920) investigated the forms of finite 
amplitude capillary-gravity waves on water of finite depth by a Stokesian analy- 
sis to the third order of approximation with the inevitable appearance of the 
same singularity a t  the second order, but in this case somewhat disguised by the 
formidable algebraic combinations of hyperbolic functions usually attendant 
with problems involving finite depth. More important, he showed photographs 
of experimentally produced waves near the singular configuration clearly indicat- 
ing pronounced second harmonic distortion, which he called ‘doubling of the 
crests.’ Unfortunately, he did not present detailed experimental results. 

Pierson & Fife (1961) reproduced Wilton’s results for capillary-gravity waves, 
including both the singular case and the cases for which the perturbation analysis 
is valid. They then investigated the situation in the immediate neighbourhood of 
the singularity by the method of strained co-ordinates. Again, their work postu- 
lates the existence of a uniform state. 

If the assumption of a uniform profile is abandoned ab inito, then it is possible 
to investigate these singular cases in the frame-work of resonant interaction 
theory. McGoldrick (1965) presented a detailed theoretical investigation of 
resonant interactions among these capillary -gravity waves and among pure 
capillary waves. But, unlike the gravity wave resonances, the interaction occurs 
at the second order, and is somewhat less tedious to analyze. I n  particular, 
McGoldrick obtained an energy integral for the interacting waves and completed 
the solution for the time-varying amplitudes in terms of elliptic functions. Rele- 
vant to the remainder of this present paper, he showed that the second-order 
singularity of Wilton and of Pierson & Fife may be eliminated by interpreting 
the phenomenon as a particular case of these resonant interactions. Un- 
fortunately, McGoldrick’s solution for this configuration is incorrect due to some 
algebraic errors, and will be corrected here. 

None the less, despite the growing body of theoretical literature in this field, 
and contrary to the direct experimental evidence produced by Longuet-Higgins 
& Smith (1966) and by McGoldrick et aE. (1966), uniform profile solutions have 
still recently been proposed for resonant conditions. Sullivan (1966) has pro- 
duced such solutions for intersecting capillary-gravity waves by the method 
used by Pierson & Fife corresponding to  the resonant conditions presented by 
McGoldrick (1965). Barakat & Houston (1968), evidently unaware of the work 
of Kamesvara Rav, have trod much the same ground, and have sorted out the 
algebra to identify the same second-order singularity in the case of finite depth, 
which they go on to eliminate by Wilton’s method. 

It appears that it is necessary, once again, to demonstrate that resonant con- 



254 L. F .  McGoldrick 

ditions preclude the physical existence of a uniform wave profile solution for 
certain initial conditions. Accordingly, an experiment has been undertaken, 
and the results, as will be seen, are clearly and conclusively contrary to the uni- 
form profile assumption and confirm in detail the resonant solution presented 
here. 

Section 2 will be devoted to a brief review of the theory of the interaction, 
with a reduction of the solutions to the case most easily observable in the wave 
tank, which will be called ‘second harmonic resonance’ (and to which, €or com- 
parison, the results of Wilton and of Pierson & Fife supposedly correspond). 
In $3, the modifications of the interaction due to the inevitable attenuating 
influence of molecular viscosity will be introduced, since the proper interpretation 
of the experimental results is heavily dependent on a critical assessment of the 
dissipative process involved. 

Following a brief description of the experimental apparatus with some per- 
tinent comments on technique, the results of several series of experiments will 
be presented in $ 5 .  I n  particular, the amplitudes of each of the interacting 
components will be traced from their inception close to an oscillating wave- 
maker through their ultimate viscous decay with increasing distance from the 
source. 

Before turning to $ 2 ,  it should be pointed out that much of the analysis 
presented here has been performed by Simmons (1967) in a generalization of 
McGoldrick’s earlier work. By allowing the amplitudes and phases of the inter- 
acting waves to be slowly varying functions of both space and time, Simmons has 
shown that the resonant response in general involves both amplitude and phase 
modulations simultaneously. It is only with special initial conditions that the 
phase modulations disappear, namely that the relative phase a t  some time be 
exactly in. If this is assumed ab initio, as was done by the earlier investigators, 
then the response is one of amplitude modulation alone. On the other hand, if 
the relative phase is zero, the amplitude modulations disappear altogether, and 
the system responds with a slow linear modulation of the phases, which amounts 
t o  an O(s )  frequency (or wave-number) shift. That these latter so-called ‘steady 
state’, or permanent form, solutions are contained within the framework of 
resonance theory is a remarkable result of Simmons’s generalization. 

Clearly then, the initial conditions are critical in determining the resonant 
response. For the remainder of this paper, it should be kept clearly in mind that 
the initial conditions for the experimental investigation have been chosen to  
elicit a response consisting solely of amplitude modulations. 

2. Review of the theory 
For resonant interactions to occur a t  the second order, it is sufficient to con- 

sider the mutual interactions of a triad of surface waves. Accordingly, we re- 
present the free surface displacement as the sum of three waves satisfying the 
resonance conditions. That is, let 

3 
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where the phase function is 

and the wave-numbers and frequencies are such that 

$i = ki.x-wit-7, 

and 

255 

The wave-numbers and frequencies are constant here, and for the purposes of 
this paper, the arbitrary phase angles vi will be supposed constant. The amplitudes 
ai are considered to be slowly varying functions of both space and time in the 
sense that the fractional changes of amplitude are small over a typical wave- 
length and wave-period. Numerical solutions of the resonance conditions (2.2) 
were given by McGoldrick (1965), and Simmons (1967) has shown a clever geo- 
metrical construction for the resonant triads. 

The dynamical equations governing the amplitudes of the interacting com- 
ponents were first obtained by McGoldrick (1965) by a straightforward perturba- 
tion procedure. We shall use the more concise development of Simmons who 
showed by variational methods that, correct to  the second order, the three 
dynamical equations for the amplitudes of the interacting components can be 
expressed compactly as 

at af + Ui. Vat - aIa2a3 J/ci  (i = 1 , 2 , 3 ) .  
- 

In these equations, ci = q / k i  is the phase speed and Ui = Qkwi is the group speed 
of the i th interacting component, and the interaction coefficient J is given by 

where the subscripts j are to be interpreted modulo 3, and lj = kj/lcj is a unit 
vector in the direction of propagation of the j t h  component. J ,  ci and Ui are 
of course constants for any given configuration satisfying (2.2). Further, the 
constant phase angles yi satisfy 

where 
The mean wave energy Ei and momentum Mi per unit projected surface area 

for each mode can be written as EL = +pwiciaf and Mi = +pkicia:. Since there 
is no dissipation and no net horizontal forces are acting, energy and momentum 
integrals exist for the dynamical system (2 .3 ) .  We easily see that two independent 

may be called the total phase. 

(2.6) I integrals, 3 3 z Bi + Ui. VE, = pala,a, J z oi = 0 

and 2 &%,i+(Ui.V)Mi =pala,a3J C ki = 0, 

exist by virtue of (2.3) and the kinematic resonance conditions (2.2). In  the ab- 
sence of viscosity, then, the total energy density and momentum density are 

i= l  i = l  

3 3 

i=l i-1 
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conserved. The principal dynamical effect of these interactions, then is to 
continuously redistribute these quantities among the interacting components. 

The interaction equations obtained by McGoldrick are a special case of Sim- 
mons’ equations (2.3) for which the amplitudes of the interacting waves are 
only functions of time. It is clear from the form of (2.3) that for the cases in which 
the resulting amplitude modulations appear to be steady, but spatially varying, 
it is only necessary to replace ajat in the earlier equations by (q . 0). The solu- 
tions for the modulation envelopes in all cases have been completed in terms of 
Jacobian elliptic functions and have been investigated in some detail. 

If the three wave-numbers are co-linear so that the propagation is in one 
direction, then it is still possible to satisfy the resonance conditions. In particular, 
if two of the wave-numbers coincide, say k, = k,, then the resonance conditions 
require that k, = k, = - Qk, and w1 = w, = - $az. That is, both the wave-number 
and frequency of the mode completing the triad are double that of the other mode. 
This degenerate case involves only two identifiable modes instead of the ususl 
three, and is easily interpreted as being a dynamical resonance between a funda- 
mental (k,, wl) and its own second harmonic (k,, w2) both propagating in the 
same direction with identical phase speeds. In  virtue of the dispersion relation 
given in ( 2 . 2 ) ,  we can easily see that if we denote by c, = (4gy)t the minimum 
value of the phase speed for capillary-gravity waves, then the phase speed 
c1 = c2 = (9/8)ic,,, and the wave-number and frequency of the fundamental 
mode are k, = (g/2y)* = k* and w1 = (9g3/8y)i. For clean water at room tem- 
perature, the fundamental has a wavelength of about 2.4 cm and frequency about 
9.8 c/s, travelling with its second harmonic at a speed 3 %  greater than the 
minimum value of 23.2 cmfs. 

For this case of second harmonic resonance, two of the dynamical equations 
(i = 1 and i = 3) in (2.3) are identical since there are really only two modes present. 
Further, since in this situation &, = Ei/cl, the integrals (2.6) are no longer 
independent, being in fact identical to within a constant multiplier (the phase 
speed). Since the 1 and 3 modes are indistinguishable, we are at  liberty to assume 
without loss of generality that the amplitudes a, and a, and the phases 7, and y3 
are identical and write a linear combination of these two modes as 

gl(X, t )  = &,(q t )  cos (k1k - w,t), (2.7) 

where &, =‘(a,+ a,)/. and the phase has been chosen to be zero. The constant a 
will be determined below. The remaining mode (the second harmonic) is now 

&(x, t )  = a2(x, t )  cos (2k1x - 2w,t - in) 

using the condition that the total phase is +n. The dynamical equations are 
obtained simply by adding the first and third of equations (2.3) and retaining 
the second as it is, or 
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where use has been made of the fact ala3 = *a2@ and the interaction coefficients 
have been determined from (2.4) for this configuration. 

The constant a is now determined by noting that the modified equations (2.8) 
for this degenerate case must still satisfy the energy integral (2.6) and straight- 
forward substitution reveals easily that a = 42. Simmons obtained these same 
interaction equations for second harmonic resonance by starting the analysis 
ab initio with only the two modes present. The short-cut used here is clearly 
equivalent to his method. 

For the remainder of this paper, we shall assume that the amplitudes al 
and a2 are independent of time. This, as will be seen in $ 5 ,  corresponds to the 
experimental arrangement used where the waves are created by an oscillating 
wavemaker. The amplitude modulation pattern appears steady then, but the 
modulation envelope varies spatially in the direction normal to the plane 
wave-maker . 

Omitting now the circumflex on the fundamental amplitude, then we have 

Choosing as initial conditions al(z,) = a, az(zo) = 0,  then the solution of (2.9) is 

We can define an interaction length scale L for later reference as being the 
distance over which the fundamental a, decays to l i e  of its maximum attainable 
value a. Then 

ak,L l.66(8U,U2)*/wl, 

or since U, = :cl and U, = Hc,, 
we have L l*S(ak,)-lcm. (2.11) 

for clean water a t  room temperature. The interaction length is inversely propor- 
tional to the maximum slope attained by the fundamental wave. In  other terms, 
since the total energy flux is constant via integration of (2.6), the interaction 
length is proportional to the ( - +) power of the total energy flux. 

Figure 1 is a sketch of those salient features of this interaction which should 
be observable in a small wave-tank. The amplitudes a, and a2 are shown as a 
function of distance. Note that the wave profiles are changing shape as they 
progress and that they are not symmetrical about a vertical line drawn through 
the crest of the fundamental. This is to be contrasted with the symmetrical 
profiles of Wilton and of Pierson BE Fife for which the amplitudes are spatially 
uniform. 

17 F L M  40 
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A natural set of initial conditions for experimentation becomes clear upon 
examination of figure 1. A wave closely approximating the fundamental alone 
can be created very close to a wave-maker oscillating at frequency wl, corre- 
sponding to the position indicated by the ordinate in this figure. Within the 
distance of several interaction lengths L this fundamental should be virtually 
undetectable, having transferred nearly all its energy into its own second 
harmonic, at  frequency 2w1 which arises &rr out of phase with the fundamental. 

I 

I I I 
I I I 

I I 
I I I 

I 

-w-w-w- 
FIGURE 1. Amplitudes of the interacting modes as a function of distance according to 
(2.10). L is the interaction length (2.11). The sketches below show the (vertically ex- 
aggerated) wave-form, which is asymmetrical except at  x = x,,. 

As a consequence of this interaction, we are led to the following remarkable fact : 
a purely sinusoidal wave of wave-number (g/2y)* of any amplitude cannot pro- 
pagate indefinitely on an inviscid liquid, and can exist only as a transient state. 
In other words, for this wave-number, the solution to the linear problem represents a 
theoretically possible state of dynamical equilibrium to the lowest order which is  in 
fact unstable at the next order of approximation. This is precisely what Benjamin & 
Feir found for the second-order Stokes wave, which they showed to be unstable 
at the next order. The difference, of course, is that for our case here, dynamic- 
ally significant resonances occur at  a lower order than is possible for gravity 
waves. 

3. The influence of viscous dissipation 
Before proceeding with the experiment suggested by figure 1, it is prudent 

to examine the approximate effects of viscosity on the dynamics of this inter- 
action. It is well knownt that the influence of viscous dissipation is to attenuate 
the waves exponentially with distance from the generating source, the modulus 
of decay (logarithmic decrement) being given by A = 2vk2/U per unit distance, 
provided the surface be scrupulously clean and the wave-Reynolds number 
R, = w/vk2 be large. If the decay length A-l of the most rapidly attenuated 

t See, Lamb (1932, 3 348). 
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wave is much greater than the interaction length L, then the interaction will 
proceed relatively unimpeded by viscosity. This requires, then, that L A  .g 1. 
For the case of second harmonic resonance it is a simple matter to show that this 
requirement is ak, 9 32R;l approximately, for clean water. 

Under these circumstances considering the effects of viscosity to be only a 
small perturbation to the interaction, it is appropriate to include these decay 
terms in the dynamical equations (2.9) as follows: 

I da, w k - = -- a,a, - A,al, 
ax 2Ul 

I aa, _ -  W l k l  2 

ax 4u2 
- +-al-A2a2. 

Here, A, and A, are the logarithmic decrements obtained for the fundamental 
and the second harmonic from the linear theory, which for clean water are 
Ai = 2vlc:lUi. The results will indicate that (3.1) seems adequate at  least for the 
parameter values obtaining in this experiment. 

Analytical solutions of the weakly damped non-linear system represented by 
(3.1) cannot be written in closed form with the exception of a few isolated 
(and physically irrelevant) cases. Approximate solutions, valid only for propa- 
gation distances of the order of an interaction length L, have been obtained 
by McGoldrick (1965), but they are too cumbersome for practical use. It is a 
very simple task, however, to obtain solutions by analogue computation (or 
numerical integration). Since the system is autonomous, all of the relevant 
details of the solution can be presented most compactly by determining the 
families of trajectories in the (a,,a,) phase plane as a function of the initial 
conditions (al(xo), a,(xo) ) and (parametrically) the logarithmic decrements A, 
and A,. 

Figure 2 is a family of trajectories for the case of clean water at  room tempera- 
ture. The amplitude of the second harmonic, a,, is plotted on the ordinate and 
that of the fundamental on the abscissa, and the trajectories are travelled 
in the counterclockwise sense. That is, distance measured away from the source 
is increasing along each trajectory in the sense toward the origin. 

Each trajectory crosses the abscissa only once with the sole exception of that 
trajectory coinciding with the ordinate. For a given trajectory (that is, given the 
initial conditions at the source), the maximum possible fundamental occurs 
when the trajectory has a vertical tangent. The locus of these points is given by 
a, = - 2A1 U,/w,k, ( = constant) which is shown as the dashed horizontal line 
in the lower quadrant. The maximum positive value of the second harmonic 
occurs where the trajectories have horizontal tangents; the locus is the dashed 
parabola a, = a!w,k,14UzA2 indicated in the first quadrant. Finally, in the in- 
viscid limit A, = A, = 0, these loci coincide with the abscissa and the ordinate 
respectively, and the trajectories become the ellipses U,a? + 2Uiai = constant, 
corresponding to the inviscid solution (2.10). 

Consider the initial conditions corresponding t o  those suggested near the 
end of the preceding section, viz. any point on the abscissa. Clearly, a purely 

17-2 
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a1 (mm) 

FIGURE 2.  Phase plane trajectories for the case of clean water at room temperature. 
Below the dashed parabola the energy transfer is primarily due to interaction, and above 
the viscous effects dominate. 

sinusoidal wave of wave-number (g/2y)* cannot decay because of viscous dissipa- 
tion without first creating its own second harmonic, &r out of phase, which will 
grow through resonant interaction until the resonant growth rate is balanced 
exactly by the viscous decay rate, from which point both will decay and ultimately 
be extinguished. This in fact is clear from the second equation of (3.1). And this 
is precisely what will be shown by the experiment. 

4. The equipment and technique 
The tank in which the experiments were performed is rectangular, with length 

about 3 m and width about 61 cm, filled with ordinary tap water to a depth of 
44 em, effectively placing the waves in infinitely deep water. The construction 
is of plywood with plexiglass sides supported within a rigid slotted steel angle 
framework. 

Waves are created by oscillating vertically a triangular shaped plunger 
extending the width of the tank. The height of the plunger is about 5 ern and 
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the front face is covered with a smooth thin sheet of glass, inclined forward a t  an 
angle of about 20" with the vertical. Because of the smoothness and cleanliness 
of the glass face, the progressive waves produced are remarkably straight crested 
and of quite uniform amplitude along the direction of the crests. 

The plunger is mounted on a rigid vertical shaft confined to a fixed axis with 
ball bushings (linear motion bearings) and is fastened concentrically to the 7.5 cm 
diameter voice coil of a heavy permanent magnet from a loudspeaker (Jensen, 
Model G 610). The entire wave-maker unit is mounted in rigid structure physically 
separate from the wave tank itself eliminating unwanted vibrations and spurious 
waves. The plunger is driven by a suitable electronic signal delivered to the voice 
coil (16 ohms) by a transistorized 40 W power amplifier. The frequency response 
of the amplifier is flat to  within & db from d.c. to 10 KHz. 

The primary driving source used in this experiment is a laboratory sine wave 
generator. The instantaneous vertical position of the plunger is determined from 
a linear displacement voltage transducer, the output of which is a voltage directly 
proportional to the position. This voltage is compared with the primary driving 
signal, and the difference (error signal) is fed back through the power amplifier 
continuously in such a way that the error is reduced (effectively) to zero. This 
feedback system assures that the actual motion of the plunger is a faithful re- 
production of the desired driving signal. The advantages of this driving system 
over the usual motor and eccentric crank system are obvious: no spurious har- 
monics of the fundamental frequency are introduced due to mechanical linkages, 
and the frequency and amplitude of the plunger motion (whence that of the 
created waves) are continuously and independently adjustable. The amplitude 
and frequency stability of the motion is that of the oscillator itself, typically 
one part in lo5. 

Measurements of the instantaneous wave profile at any point in the tank are 
made with a wave probe similar to the well-known capacitance type. The probe 
element itself, however, is not a pure coaxial capacitor, but ano. 30 bare stainless 
steel hypodermic needle; the total electrical impedence with respect to a fixed 
ground is inversely proportional to the depth of immersion. Driven from a high- 
frequency constant voltage oscillator, the current through the probe is directly 
proport,ional to the immersion depth, and suitable detection by simple transistor 
circuits produces a voltage signal directly proportional to the instantaneous 
wave height. Overall sensitivity of the device is 1.414 V/mm wave height, with a 
frequency response flat from d.c. to at least 100 cis, and is remarkably linear. 
With proper attention, wave amplitudes of the order of 10-3 mm can easily be 
detected. 

We wish to create in the immediate vicinity of the plunger a purely sinusoidal 
wave of wave-number 12,. This can be accomplished with some precision by 
oscillating the plunger sinusoidally a t  the corresponding frequency, given 
by the dispersion relation in (2.2). Since for second harmonic resonance 
k, = (g/2y)* and wI = (9g3/8y)4, these values depend solely on the value of the 
surface tension coefficient y. It is a simple matter to measure the static value of 
y with a duNouy tensiometer. Further, it was always a pleasant coincidence 
that the measured values of y for our tap water agreed with the accepted static 
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values determined for distilled water,? the agreement usually being within 
& 0.3 cm3/s2. 

Using the measured static y to determine the frequency of the plunger, we 
found (to our immediate consternation) that the details of the ensuing wave pro- 
pagation were utterly at variance with the resonance predictions. Either of 
two conclusions may be drawn: the resonance theory is inaccurate, or the effec- 
tive value of the surface tension for a surface that is continuously being deformed 
is not the same as that for a static interface. Resisting (naturally) the former, 
we investigated the consequences of the latter in some detail. 

Considering the effective value of the surface tension coefficient, ye, to be 
unknown, then it is a simple matter to determine this quantity by experiment. 
Oscillate the plunger with a small amplitude a t  a frequency near that cor- 
responding to resonance. The wavelength of the waves created can be deter- 
mined then by comparing the wave signal from the probe to the driving signal, 
both easily displayed on an oscilloscope as a Lissajous figure. Displacement of 
the probe in the direction of propagation by an integral multiple of the wavelength 
restores the same Lissajous figure (in practice, a straight line, indicating that the 
wave-form at the two points is exactly in phase with the plunger motion). 
The wavelength determined this way is usually precise to within one part in lo3. 
Then ye is determined from the dispersion relation according to ye = (w2 - gk) /k3 .  
The frequency can be measured by electronic counters to 1 part in lo5, and the 
precision of the measured ye is about 3 parts in 103, or nearly as precise as the 
static tensiometer method. In  all cases, the dynamically measured value was 
less than the measured static value, sometimes by as much as thirty percent, 
confirming our earlier suspicions. We will return to this point in the concluding 
section below. 

More to the point of the experiment, we can determine the actual resonant 
frequency (and thence ye) by a simple procedure. Since k, = (g/2ye)&, then in the 
dispersion relation w2 = gk+ yek3 it is easy to see that at  resonance, the fist 
term on the right-hand side is numerically twice the second, whatever the value 
of ye.  Then at  resonance w; = igk, ,  or in terms of wavelength and period (the 

39 
directly measured variables), 

= -T;. 
4n 

Figure 3 represents a ‘tuning diagram,’ the heavy line corresponds to ( A ,  7 )  

satisfying the resonance conditions, which now are (4.1)) or ( A ,  T) = (Al, T ~ )  

at resonance. The light lines, intersecting the tuning curves are local approxi- 
mations to the dispersion curves for constant yeye. The tuning procedure is simple: 
measure a point ( A ,  T) as described above, plot it on the tuning diagram, deter- 
mining ye, then adjust the period to correspond to the intersection of that constant 
ye curve with the resonant locus (4.1). The tuning process is in practice one of 
successive convergence, usually taking no more than four steps. 

As a final check on the tuning, recall that a t  resonance, the phase speed of the 
fundamental is identical to that of the second harmonic. Accordingly, the 
plunger is driven at  exactly twice the (measured) resonant frequency, and the 

t See Handbook of ChemGtry and Physics, 46th ed. (1965-6). 
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measured wavelength is half that of the previously tuned fundamental, to 
within Q %. Furthermore, besides being a necessary check on the tuning, this 
indicates that ye is identical for the two frequencies involved in the experiment, 
namely w1 and 20,. It would be of interest to determine ye in the range 
w1 < w < 2wl, but this is not crucial to the proper tuning of the 

2.5 

50, , I  , , ,  I I  
90 95 100 105 

Period 7 (ms) 

experiment. 

FIGURE 3. The tuning diagram. h ia the fundamental wavelength, 7 the wave-maker 
period. The points represent the experimental determination of ye for the subsequent 
measurements. 

As an experimental ‘aside’, we point out that a tuning diagram similar to that of 
figure 3 can be constructed for waves travelling at  the minimum phase speed. 
For this case, both terms of the dispersion relation are numerically equal, and 
A, = ( g / m ) ~ k .  Tuning for (A, 7 )  = (Arn, 7,) then determines y,(u,). The effective 
surface tension measured this way always agreed with that of the first method 
to within the precision of the measurements. Indeed, the resonant tuning may be 
accomplished by determining 7, first, then adjusting the frequency of the oscil- 
lator to o1 = (&)&om. This alternative tuning procedure is less attractive experi- 
mentally than the direct tuning. It does suggest, however, that ye may not vary 
appreciably over the frequency range of interest here. 
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In  earlier measurements on third-order gravity wave interactions, both Mc- 
Goldrick et al. and Longuet-Higgins & Smith resorted to elaborate tuning pro- 
cesses which involved detailed measurements of everything in sight in the neigh- 
bourhood of resonance for reasons clearly described there. In essence it was 
impossible to determine the ‘proper tuning’ in advance. In  the present case, 
quite to the contrary, tuning is relatively easy to accomplish, obviating the neces- 
sity for detailed measurements in the neighbourhood of resonance. Indeed, to 
our utter delight, when carefully tuned as described above, the interaction process 
i s  so dramatic that it can be seen by eye! In  $ 5 ,  we present the detailed histories 
of the interacting components and investigate the adequacy of the weak damping 
assumption of $3 .  

5. Results of the measurements 
In  order to assess the adequacy of the approximations leading to the inter- 

action equations (3.1) and figure 2,  a series of experiments were performed. 
Before displaying the results of those measurements, it is appropriate to comment 
on some difficulties known to be somewhat vexatious to experimenters. 

The matter of tuning the resonance, described in the preceding section is simple. 
That the effective, or dynamically measured, coefficient of surface tension does 
not agree with the accepted static values clearly indicates that the interface is 
not the ideal scrupulously clean one supposed in the simplest of interfacial models 
but in fact contaminated. We shall not be concerned with the precise chemical 
nature of the contamination, which presumably arises from adsorbtion of matter 
from the atmosphere or fall-out of minute dust and oily carbon particles, but 
only in its observable effects. 

Given a dirty surface, then, it is clear that the dissipation of the waves will not 
be identical to that for a clean surface. The logarithmic decrements A, and A2 
of (3.1) will not be the classical expressions and must be considered unknown. 
In view of the form of (3. l), it is possible to determine A, directly by creating the 
second harmonic (a,) alone at  the plunger and measuring its decay as it progresses 
away from the wave-maker. Recall that, if the amplitude of the fundamental 
a, is ever zero, it remains so, and the second harmonic can propagate without 
interaction; i.e. the ordinate of figure 2 is a trajectory. On the other hand, it is 
impossible to determine A, directly, since the fundamental can exist only as a 
transient state; it  must interact with its own second harmonic. 

Trial measurements of A, as described above quickly revealed the not-so- 
surprising fact that indeed, for a dirty surface, the second harmonic was attenu- 
ated much more rapidly than for a freshly prepared relatively clean surface. 
Furthermore, the attenuation increased markedly, up to a point, with age of the 
surface, indicating that the ‘dirtiness’ of the surface increased with time, as we 
suspected. 

If the characteristics of the surface are continuously changing with time, as 
evidenced by successive measurements of both ye and A,, then there is no hope of 
obtaining detailed measurements of the interacting amplitudes, which requires 
some time. It would then be necessary to take elaborate precautions to keep the 
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surface clean, which is virtually impossible considering the physical size of the 
apparatus. 

Fortuitously, we found that these precautions were not necessary. The con- 
tinuous monitoring of the surface dirtiness revealed that usually within 3 days 
from filling of the tank with ordinary untreated tap water, the surface approached 
a kind of ‘equilibrium dirtiness’, after which ye and A, remainedroughly constant 
for several more days. We do not wish to propose units in which dirtiness may be 
measured. However, a qualitative judgement may easilybe made : the experiment 
may be performed at  such time when the time constant of the dirtiness co- 
efficients exceeds the contemplated duration of the measurements by an order of 
magnitude or so. As a check on the validity of this concept of ‘quasi-equilibrium 
dirtiness,’ the properties of the surface should be measured before and after the 
experiment. Finally, we found that the asymptotic approach to equilibrium 
dirtiness was repeatable, yielding (for several trails) equilibrium values for 
ye and Az differing by no more than 1 yo. We feel that it is justifiable to perform 
the experiments on dirty water (i.6. prepared in no way). 

Figure 4 represents the results of three sets of measurements shown here in the 
(u,, a,) plane. The resonance was tuned as described above, and the amplitudes 
of the fundamental and the second harmonic were measured as a function of 
distance normal to the plunger, a t  spatial intervals of 1 cm. The components 
were electronically separated with the use of an adjustable narrow-band-pass 
filter (Dytronics Model 720). The measured amplitudes, indicated on the figure, 
have been corrected for the filter shape (transfer function). The trajectories 
represent three series of measurements, for which the plunger was driven sinu- 
soidally with different amplitudes, corresponding to different initial conditions. 

,N 
0.02 

I A  

Fundamental a ,  (mm) 

FIGURE 4. Phase plane results of three series of meesuremonts corresponding to  three 
different initial conditions (wave-maker amplitudes). 

Now it is possible to determine the attenuation rate A1 indirectly. We can con- 
sider A, to be a parameter in the interaction equations (3.1). This parameter 
may be varied until the solutions of (3.1) coincide with the experimental measure- 
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ments of figure 4. Accordingly, the equations (3.1) were set up on an analogue 
computer (built by us), and A, is modeIed with a variable potentiometer. The 
analogue voltages of a, and a2 are connected to the horizontal and vertical in- 
putsof an X-Y recorder (Mosley Model 7035 B). Appropriate initial conditions are 
set, the graph paper containing the plotted measurements placed in the machine, 
and the trajectories are drawn. Successive settings of the A, potentiometer 
eventually produce machine drawn trajectories passing through the previously 
plotted measured points. The accepted value of the damping coefficient then is 
that value for which all three trajectories best approximate the measurements. 

Figure 5 presents the measurements corresponding to the outer trajectory of 
figure 4 as a function of distance in the direction of propagation. The upper curve 
is the fundamental amplitude, the lower that of the second harmonic. The line 
represents the computed trajectory of figure 4, or the theoretical solution. 

x (cm) 

FIGURE 5. The interacting amplitudes as a function of distance compared with the 
theoretical result. 

In order to assess the strength of the interaction with respect to the ordinary 
viscous attenuation, it is a simple matter to solve the dynamical equations 
(3.1) with the neglect of the non-linear coupling terms on the right-hand side. 
Each wave decays independently with logarithmic decrements Ai determined 
by the above procedure. Figure 6 summarizes the hypothetical situation. The 
solid lines are the measured trajectories of figure 4, the dashed lines are the tra- 
jectories computed as if there were no interaction; i.e. they represent the viscous 
effects alone. Again, in the lower half of figure 5, the dashed line represents 
the pure viscous attenuation of second harmonic a2 that would occur if there 
were no interaction (and which does occur if it is created alone.) In  the upper 
part of this figure, the dashed line represents the pure viscous decay of the 
fundamental that would occur if no interaction were taking place. The line is 
drawn according to the best fit A,. This shows perhaps most clearly that the 
fundamental is a source of energy for the resonant growth of the second harmonic, 
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and that for some distance the resonant transfer of energy dominates the viscous 
decay. 

The measurements presented here were all obtained within a 24 h period. 
Subsequently, the tank was drained and the same measurements repeated after 
surface equilibrium was re-established, with substantially 
which therefore need not be repeated here. Table 1 presents 

the same results 
a summary of the 

0.06 

1 0.04 
v 

c? 

Q.02 

0 

a1 

FIGURE 6. The dashed lines represent what the trajectories would be if there- were no 
interaction, but only independent viscous decay. (Superimposed on the results of figure 4.) 

surface conditions corresponding to the measurements presented and, for com- 
parison, the same quantities for a clean surface at  the same temperature, which 
was 20.5OC. In  the table, A, and A, are the wavelengths of the fundamental 
and the second harmonic, c the phase speed, 71 the period, A, and A, the log- 
arithmic decrements. Of these quantities, the experimental value of A, is the least 
precise in view of the complicated manouevres necessary for its determination, 
It represents no more than the best fit by eye of the trajectories to the measured 
data, and no elaborate attempts have been made to determine it with the pre- 
cision attained by the other figures. 

Measured 
(dirty 

surface) 
72.5 
63.5 

2.265 
1-132 

23.01 
98.42 
0.066 
0.108 

Calculated 
(clean 

surface) 
72.6 
- 

2.42 
1-21 

23.79 
101.6 

0.0068 
0.0194 

TABLE 1. Summary of the measurements. 
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Finally, there is the question of relative phase which determines the wave form. 
According to the analysis, the phase difference between the two interacting 
components is &r. Figure 7 (plate 1) is a photograph of two oscilloscope traces 
showing the wave form. The vertical input is the wave form directly from the 
output of the wave-probe device, the vertical sensitivity on both photographs 
is 0-02 mm (wave elevation) per large division, and the horizontal sweep rate 
is 20 ms/div. For the upper photograph, the probe is about 11 cm from the 
plunger face and for the lower, about 25 cm farther downstream. In both cases, 
the relative phase is closely in, and in all cases during the course of this investi- 
gation, this phase difference remained constant with propagation distance. 
Apparently, the viscous attenuation (for this case) does not affect the relative 
phase between the interacting components. Further, for this case of resonance, 
the actual wave form bears no similarity with the symmetrical, but steady state 
profiles given by Wilton (1915) and others subsequently. 

6. Further comments and summary 
It is appropriate here to include some further thoughts on the nature and 

effects of the surface contamination. Miles (1967) confronted the problem of 
surface wave damping due to viscous dissipation a t  and in the neighbourhood 
of a free surface covered by a viscoelastic surface film from an analytical point 
of view, attempting with some success to explain earlier experimental observa- 
tions. I n  particular, among those controlled (from the chemical point of view) 
experiments, Davies & Vose (1965) measured the damping of capillary ( A  < 0.5 
cm) waves on both clean and meticulously prepared contaminated surfaces. 
Among their objectives was the answer to the following question: ‘Does the 
Kelvin equation (alternatively, our dispersion relation (2.2)) give the equilibrium 
surface tension of film-covered surfaces (i.e. when the surface tension fluctuates 
between the crests and troughs)?’ 

In  general, the damping a t  a clean surface results from viscous energy dis- 
sipation in the bulk of the fluid. The surface is completely mobile and the log- 
arithmic decrement is well known as A = 2vk2/ U. On the other hand, if a surface 
layer is present, the surface tends to contract at a crest and expand a t  a trough 
so that surface tension stress gradients are produced by differential surface 
concentrations of the contaminant, the effect being an increased rate of energy 
dissipation. For a surface immoblized by a surface film (i.e. which has no hori- 
zontal velocity components), Lamb (1932) obtained for the damping 

Aimm = (vWk2/8U)*, 

which is grcater than that for a clean surface for all but the shortest of capillary 
wavelengths. 

Davies & Vose further point out that, if the surface dilitational viscosity is 
negligible with respect to the surface compressional modulus, then for values 
of this modulus intermediate to  the fully mobile and completely immobile 
surfaces the damping can be approximately twice as great as Aimm. Miles (1967, 
figure 1) determines a measure of the damping that owes its existence to the 
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presence of a surface film and presents this measure graphically as a function of 
the surface compressional modulus for several values of the dilitational vis- 
cosity, clearly delineating the conditions for which the damping is greater than 

From our experiments (see table 1) the measured decrements are A, = l-6Alimm 
and A, = 1.3 Alimm, the latter being more precise for reasons mentioned above. 
The measured decay agrees with the immobile calculations much more closely 
than with the clean surface calculations which suggest a conjecture: perhaps 
the ‘approach to equilibrium dirtiness’ described in 9 5 is, in view of the continuous 
adsorption or deposition at the surface, in reality an ‘approach to surface 
immobility’. This conjecture is, of course, impossible to establish firmly on the 
basis of our experiments, since the precise composition of the film is unknown, 
but suggests further investigation along these lines under carefully controlled 
conditions. 

Davies & Vose, in addressing themselves to the posed question on the applic- 
ability of Kelvin’s formula, concluded that it was accurate to within 1.5 yo on 
clean water, and further, is approximately valid for film covered surfaces, even 
though y now varies between the crests and troughs. We disagree with their second 
conclusion. It is clear from our results that at  the time of the experiments, the 
measured equilibrium surface tension was 72.5 dynesicm, whereas the value 
determined under dynamical conditions from Kelvin’s formula was 63.5 dynes/ 
cm, or approximately 12.5 yo smaller. The Kelvin formula in our case does not 
give the equilibrium surface tension, but apparently an effective average over EL 

wavelength. But then, in our dynamical problem, there is no compelling reason 
why the equilibrium value should be relevant. What the Kelvin formula does 
give for contaminated surfaces is the correct value for the ‘dynamic’ surface 
tension, as evidenced by the success of the tuning in a clear cut resonant dynamical 
problem. 

Aimm. 

1.01 c 

I I I I I I 
0 0.05 0.10 015 0.20 

a1 (mm) 

FIGURE 8. Phase speed as a function of wave amplitude at  resonance. From table 1, 
c* = 23.01 cm/s. 

It is natural to ask at  this point whether the effective surface tension varies 
with the rate of straining of the surface film a t  constant frequency, which is 
proportional to the amplitude of the waves. Accordingly, the phase speed at 
resonance was measured for a range of amplitudes intermediate to those obtaining 
in the experiments. The results are shown in figure 8. The ratio of measured phase 
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speed c to that determined by the value of ye from table 1 (c* = (:ye 9)) )  is shown 
as a function of the measured amplitude of the wave. The variation in the speed 
is less than 1 yo, which is close to the overall precision of the measurements and 
we may conclude that the effective surface tension remains close to its determined 
value, at  least over much of the range of the experiment. 

As mentioned before, due to the sharpness with which the resonance can be 
tuned, it is not necessary to make detailed measurements in the neighbourhood 
of the resonant frequency such as were necessary for our earlier gravity wave 
interaction studies. It is worthwhile to present some information off tune in view 
of the conclusion that will ultimately be drawn. Figure 9 (plate 2) presents 
photographs from the oscilloscope of the wave forms corresponding to (a)  fre- 
quency 13 % lower than resonant (8-82 c/s) and ( b )  11 yo higher than resonant 
(11.7 cis). For both pictures, each vertical major division represents 0.02 mm 
wave height and the horizontal sweep is 20 ms/div. The upper (9a )  is a Stokes, 
or gravity-type profile while the lower (9 b) is a Crapper or capillary-type profile, 
for which the crests are flattened and the troughs sharpened. Both profiles are 
in qualitative agreement with the (non-singular) results of Wilton (1915). The 
phase of the second harmonic constituent relative to the fundamental, zero 
for the upper and rr for the lower, remains constant as the wave progresses the 
tank, and the second harmonic component never grows. That is, in both cases, 
the wave form becomes closely simple harmonic as the wave attenuates with dis- 
tance from the plunger. Sufficiently far from a resonance, then, the Stokesian 
analysis certainly should be a good approximation. 

Finally, then, the conclusion that must be drawn from these experiments is 
inescapable. The influence of viscous dissipation suggested earlier seems to be 
entirely adequate to the order considered here. But, more important, we have 
demonstrated (again) that under resonant conditions and with the initial condi- 
tions as chosen here, there cannot be a uniform wave profile. 

This work was supported by the Ocean Sciences and Technology Group of the 
Office of Naval Research (contract N-00014-67-A-0285-0002), which we grate- 
fully acknowledge. 

It is also a pleasure to acknowledge much private communication with Dr W. F. 
Simmons, who suggested that the experiment of $1 be performed, coined the 
name ‘second harmonic resonance’, and bointed out that my solution for this 
case was incorrect. The only significant difference between $ 2  and Simmons’ 
work is the method of extracting the second harmonic resonance equations for the 
more general triad set. 
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FIGURE 7. (a )  Oscilloscope trace showing the phase difforence, at  11 cm from the wave- 
maker. Total wave amplitude is about 0.11 mm. (b)  Same conditions as (a)  but 25cm 
farther from the wave-makor. 
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(6) 

FIGURE 9. Wave forms off resonance. (a) Frequency 8-82 c/s.  Gravity type. (6) Frequency 
11.0 G / S .  Capillary type. 
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